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Abstract 

A canonical numbering of molecular graphs based on the maximum code assigned 
to the lower-triangle part of the adjacency matrix is used for a recurrent constructive 
enumeration of molecular graphs. The underlying theoretical concept - the so-called 
semicanonical numbering - i s  much more restrictive than the originally used concept 
of cooperative numbering. The method does not involve very time-consuming isomorphism 
checks of currently constructed graphs against those already constructed. 

1. Introduction 

The problem of constructive enumeration of molecular graphs is one of the 
very attractive problems of mathematical chemistry. In particular, it is not important 
only for computer-assisted structure elucidation [1,2], but also for computer-assisted 
synthesis design [3,4]. Many effective methods [5-14] for constructive enumeration 
have been elaborated and suggested. The common problem of all methods has been 
how to overcome the typical problem of almost all combinatorial algorithms, called 
combinatorial explosion. This problem is here manifested by the appearance of 
graphs in a current stage that have already been constructed in the previous stages 
of enumeration. Therefore, the most time-consuming process usually is checking 
the isomorphism of the currently constructed graph with those already constructed. 
From this point of view, in each well-established method of constructive enumeration 
it is very important to carefully study its combinatorial and graph-theoretical properties; 
then, as a result of these theoretical considerations, the necessary conditions of 
nonredundancy of created graphs are formulated. 

In our recent communications [15,16], we have elaborated a recurrent 
constructive enumeration of molecular graphs and a canonical numbering based on 
the maximum code of the lower-triangle part of the adjacency matrix. It was proved 
that this canonical numbering of graphs is also cooperative [15]. It considerably 
restricts a huge number of graphs being created in the course of the so-called 
extension process (where from a canonically numbered graph composed of n vertices, 
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cooperatively numbered graphs composed of n + 1 vertices are created). Applying 
the above-mentioned theoretical tools, we have arrived at an efficient method of 
constructive enumeration of graphs in which it is not necessary to carry out isomorphism 
checks of  a currently constructed graph with the previously constructed graphs. 

The purpose of this communication is to modify our constructive enumeration 
of graphs by a stronger concept, that of the so-called semicanonical numbering of 
graphs, which was initially suggested by Faradzhev [17-19]  fifteen years ago. 
His method is based on a canonical numbering of graphs, which is produced 
by the maximum code of the whole adjacency matrices. Recently, we have 
demonstrated [20] that a similar concept may be also used when the canonical 
numbering is based on the maximum code of the uppcr-triangle part of  the adjacency 
matrices. The resulting algorithm is surprisingly fast and simple. We believe it 
might be of value in modilying our original approach [ 15] of constructive enumeration 
of graphs with canonical numbering employing the lower-triangle part of the adjacency 
matrices by the concept of  semicanonical numbering. Although the algorithm was 
initially introduced for canonical numbering with the upper-triangle part or the 
whole adjacency matrix, we will show that it may be used also for constructive 
enumeration based on a canonical numbering employing the lower-triangle part of  
the adjacency matrix. However, the whole theory may be presented in a more 
simplified and transparent form than its original formulation [15]. For example, it 
is no longer necessary to use the notion of saturated and/or unsaturated vertices, 
which has played an important role, and also the so-called extension process will 
now be conceptually simpler. 

2. Basic concepts 

Let ~q  (for p > 0 and q > 0) be a family of adjacency matrices A = (aij). 
These matrices are symmetric, with p rows and columns (we say that their types 
are t(A) = (p, p)), their entries are zero and/or unit digits, the diagonal entries are 
zero, and their nondiagonal entries are restricted by 

(1) 2., aij = q. 
i<j 

Each adjacency matrix A ~ Fpq unambiguously represents a numbered graph [15] 
G composed of p vertices and q edges. In our forthcoming considerations, we shall 
always assume that its vertex set V(G) is composed of  the first p natural integers, 
i.e. V(G) = {1, 2 . . . . .  p}. An edge set E(G) is composed of unordered pairs [i,j] 
of integers from V(G), where [i, j] E E(G) ¢:* a i j  = 1. 

A permutation R = (q ,  r 2 . . . . .  rp) of p objects (1, 2 . . . . .  p)  is uniquely 
represented by the so-called permutation matrix [21] composed of zero and unit 
entries, and each row/column contains just one unit entry. A set (called the symmetry 
group) of all permutation matrices of p objects will be denoted by Sp. 
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DEFINITION 1 

Two adjacency matrices A 1, A 2 ~ ~ q  are called equ iva len t ,  A l = A 2, if there 
exists a permutat ion matrix R ~ Sp such that 

A I = RTA2 R. (2) 

Two equivalent matrices A: and A 2 a re  represented by isomorphic graphs G 1 
and G 2 (G  1 = G2).  The family Fpq may be decomposed into disjoint subfamilies 
that  are composed  of  equiva len t  matr ices ,  ~ q  = , t o )  .,pq k..) Fp?)k..) . . . .  where 

a 1 , a 2 G Fp~ ) ¢~  A 1 _=_ a 2. 
We assign to each adjacency matrix A ~ Fpq a s t r ing  composed of its lower- 

triangle entries: 
[A] = ~aEla31a32 . . . ap lap2 .  . . ap, p_ 1); (3) 

the string contains p ( p -  1)/2 characters "0" and/or "1", and is formally considered 
a binary number,  i.e. we assign to each adjacency matrix a binary number. According 
to this interpretation of strings, they may be mutually related by the following three 
relations: "equal to", "smaller than", and "greater than", i.e. [All = [A2], [A 1] < [A2], 
and [A 1] > [A2], respectively. 

Each subfamily Fp~ ? c Fpq is represented by its code determined as the maximum 
value of all strings of matrices from Fp~ ), 

code /=  max [A]. (4) 
AeSr~ ) 

This type of code was initially introduced by the present authors [15, 16] as a valid 
theoretical tool for constructive enumeration of  graphs. Definition (4) may be 
alternatively rewritten as follows: 

code /=  max [RTA R],  (5) 
R ~Sp 

where A is an arbitrary adjacency matrix of ~ ) .  

DEFINITION 2 

Adjacency matrix A_ ~ .~pq with the code determined by 

code/= [A_] = code (A) (-6) 

is called the canon ica l  ad jacency  matrix.  A graph determined by a canonical adjacency 
matrix is called the canon ica l l y  n u m b e r e d  graph .  

For a fixed s, bounded by 1 < s < p, an adjacency matrix A ~ ~ q  can be 
decomposed into block matrices as follows: 
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A = / A I ~  A2T~ 1 

~.A21 A22 ) '  
(7) 

where A l l  (A22) corresponds to the left-up (fight-bottom) comer  submatrix of  A, 
its type is t(All ) = (s, s) [t(A22 ) = ( p  - s, p - s)] .  A rectangular submatrix A21 of the 
type t(A21)= ( p -  s, s) will be expressed via its s-dimensional row vectors, 

A21 = 

l C1 

C2 

Cp _ s 

(8) 

Let a = (ai) and b = (b i )  be two s-dimensional row vectors; they are equal, a = b, 
if a i = b i, for i = 1, 2 . . . . .  s. These vectors may also be related by a > b (a < b) if 
there exists an integer 1 < i < s such that aj = bj,  for j = 1, 2 . . . . .  i - 1 and a i > b i 

(a i < bi) .  

DEFINITION 3 

An adjacency matrix A ~ ~pq is called s e m i c a n o n i c a l ,  if for each 1 < s < p 
the row vectors c 1, c 2 . . . . .  Cp_ s of the submatrix A21 satisfy 

C 1 >--- C 2 >--... --> Cp -s" (9) 

A graph determined by a semicanonical matrix is called the semicanon ica l l y  n u m b e r e d  
graph.  

The above notion of  a semicanonical adjacency matrix represents a crucial 
point of  our constructive enumeration of  graphs. It enables the formulation of  a 
necessary condition of  canonicity of adjacency matrices. 

THEOREM 1 

A canonical adjacency matrix is semicanonical. 

Let us consider an adjacency matrix A ~ ~pq and let us assume that for a 
fixed 1 < s < p  the row vectors c 1, c 2 . . . . .  Cp_ s of  the rectangular submatrix A21 
do not satisfy condition (9). For instance, the vectors c i and cj (for 1 _< i < j-< s) 
satisfy c i < cj; then there should exist a permutation matrix R assigned to a transposition 
of  indices i and j such that [RTA R] > [A]. We have proved that an adjacency matrix 
which is not semicanonical cannot be canonical; a reverse form of  this implication 
is given by theorem 1. 
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Theorem 1 represents a strong restrictive necessary condition of the canonicity 
of  adjacency matrices. If we are looking for a canonical matrix in the subfamily 
~q), then it is entirely sufficient to consider only those matrices of ~pq) that are 
semicanonical; all others are omitted. 

Let us assume that for some fixed 1 < s < p the adjacency matrix will be 
written in the form (7). What is now very important is that the submatrix All is 
canonical if the original adjacency matrix is also canonical. If the adjacency matrix 
A corresponds to a graph G, then the submatrix All corresponds to a subgraph 
G11 c G created from G by deleting all vertices numbered by s +  1, s + 2 . . . . .  p. 

THEOREM 2 

If an adjacency matrix A a ~q  is canonical, then for each 1 < s < p  the 
corresponding submatrix All is also canonical. 

The proof [15] may be carded out in a similar fashion as the proof 
of theorem 1. 

3. Canonical number ing  of graphs 

The concept of canonical numbering of a graph G, represented by an adjacency 
matrix A ~ 5~pq ), requires one to find a permutation matrix R ~ St, such that, cf. (6), 

code/= [RTA R]. (10) 

If the graph G is canonically numbered, then the above relation is achieved automatically 
for an identical permutation R = E; all other permutation matrices that satisfy (10) 
correspond to automorphisms of the graph. For our constructive enumeration of 
graphs, we only r~eed to know whether a graph is canonically numbered or not. If 
we find a matrix R such that [RTA R] > [A], then the graph G is not canonically 
numbered. The main effort in finding a canonical numbering of graphs should be 
concentrated on a process of achieving condition (10) by making use of  only those 
permutation matrices R ~ Sp that lead as quickly as possible to the required result. 
A vertex of G which in this process will be numbered by 1 should belong to a vertex 
subset Vprior(G ) c V(G) composed of the vertices that induce a maximal clique (or 
cliques) in G (see theorem 6 in [15]); all other vertices will give adjacency matrices 
with the first few rows smaller than the ones of the matrix ~, corresponding to the 
maximum code(A), see (6). This process is considerably accelerated by theorem 1; 
a canonical numbering may be successfully constructed by the trial and error method 
(implemented as a backtrack searching algorithm with a branch and bound modification 
[22]) in such a way that the corresponding block matrices All are canonical. Moreover, 
only those permutations R ~ 5p (see theorem 1) that will produce semicanonical 
adjacency matrices are used. Combining these two observations, we obtain a very 
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efficient method of canonical numbering of  graphs which, in the process of  traversing 
the searching tree, skips all situations where there is no chance of  achieving the 
canonical numbering. 

3.1. COOPERATIVE NUMBERING [15,24,25] 

In our previous communication [15], we have used the concept of  cooperative 
numbering of molecular graphs as a proper tool restricting the process of  construction 
of canonical numbering. In its original formulation, the numbering has been done 
in a slightly vague manner. Therefore, for the purpose of our forthcoming considerations 
(mainly for a comparison of its efficiency with the semicanonical numbering), it 
will be worthwhile to specify this numbering by an exact set-theoretical formalism. 

The method of cooperative numbering is determined by the following recurrent 
procedure: 

(1) In the initialization (zero) step, two sets Y1 and Y2 are constructed, Y1 = {v} 
and Y2 = V(G) \ Y1, where v ~ V(G) is an arbitrary vertex of G. 

(2) In the ith step (i = 1, 2 . . . . .  p), an arbitrary vertex v E Y1 is numbered 
by i; formally, we put r i = v. From the current sets Y1, Y2 . . . . .  Yt, we form auxiliary 
sets 

Y1 = Y1 \ {v}, 

Y'= Yi, (for i =  1, 2 . . . . .  t -  1), 

Y[= Y, m r (v ) ,  

Y[+1 = Y, N Y;, 

( l l a )  

( l l b )  

(11c) 

( l l d )  

where F(v) _ V(G) is a vertex subset composed of all vertices that are adjacent to 
the vertex v ~ V(G). Finally, from the auxiliary sets Y'1 . . . . .  Y~'+ 1 we form new sets 
Y1, Y2 . . . . .  Y~, in such a way that we take into account only nonempty ones and 
order them in the same manner as they appear. 

The second step is recurrently repeated until all vertices are numbered (when 
it is impossible to create nonempty sets Y); this is achieved after p repetitions for 
graphs composed of p vertices. The set Y~ serves as a stack of vertices that may 
be potentially numbered by i in the ith step; if this set is emptied, then the forthcoming 
set Yz will be used as YI, and so on. We see that sets Yi (for i = 2 . . . . .  t -  1) remain 
constant until the set Y~ is emptied, then the set Y2 is pushed to Y1. The set Yt is 
used for the creation of  new sets Y[ and Y[+ 1 by splitting the set according to 
whether its vertices are connected with the currently numbered vertex or not. The 
process of  this numbering carried out by the present set-theoretic formalism is 
illustrated in fig. 1. The suggested method is summarized in the form of  a pseudo- 
PASCAL algorithm. 
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ALGORITHM 1 

1. v := any 

2. 

3. 

4. 

5. 

6. 

7. 

8. 

9. 

10. 

11. 

12. 

13. END. 

element of  V(G); 

Y1 := {v}; Yz := V(G) \Y1;  t := 1; i := 0; 

WHILE t > 0  DO 

B E G I N  i : = i + l ;  

r i := any element of  Y1; 

Y1 : = Y l \ { r i } ;  

FOR i : =  1 TO t - 1  DO Y':=Yi;  

Yt: = Y, n r(r,-); Yt'+ 1 := Y, XYt; 

t '  := 0; 

F O R  i : = l  TO t + l  DO 

IF  Y ' * 0  T H E N  BEGIN t ' : =  t ' +  1; Yt,:= Y 'END;  

t := t ' ;  

3.2. SEMICANONICAL NUMBERING 

Semicanonical numbering of graphs with codes formed from the upper-triangle 
part of  adjacency matrices is discussed in our recent communication [20] devoted 
to an approach of  constructive enumeration of graphs similar to those initially 
suggested by Faradzhev [17, 18]. The concept of  semicanonical numbering has been 
introduced (see definition 3) through adjacency matrices which have to be semicanonical. 
This definition is not constructive; by its application, we may only check whether 
an adjacency matrix is semicanonical or not. For our constructive enumeration of  
graphs, the availability of  a method which is able to construct a semicanonical 
numbering in a similar way as for the cooperative numbering described in the 
previous subsection (see algorithm 1) is of paramount importance. 

Let v ~ V(G) be an arbitrary vertex of G chosen to be numbered by 1, i.e. 
we put r 1 = v. The vertex set V(G) is divided into two disjoint subsets Y1 and Y2, 

Y1 = l-'(p), Y2 = ( V ( G ) \ { v } ) \ Y  1. (12) 

Let us assume that ( i - 1 )  vertices have already been numbered by 
1, 2 . . . . .  i - 1  and that the sets Y~, Y2 . . . . .  lit have been formed. An arbitrary 
vertex v ~ Y1 is numbered by i, i.e. r i = v; this is accompanied by the creation of  
the following auxiliary sets: 

t Yk = F(ri) n Yk, 

I g ,, ( Y k \ { V } ) \ Y k ,  
Lrk ' Yk = \ Y k ,  

(for k = 1,2 . . . . .  t), (13a) 

(for k = 1), 
(for k = 2 . . . . .  t). (13b) 
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Each subset Yk is divided into two disjoint subsets Y~ and Y~'. A sequence of  sets 
t p l  • g t  p ¢ t  Y1, YI, Y2, Y2 . . . . .  Yt, Yt is compressed into a new sequence Y~, Y2 . . . . .  Yt in 

such a way that only nonempty sets are considered. The above procedure is repeated 
until all vertices are numbered. 

The sets Yx, Y2 . . . . .  Y~ constructed in the second part of  the ith step have a 
simple interpretation: a set Yi (for i = 1, 2 . . . . .  t ' )  is composed of  those still non- 
numbered vertices that are similar [23] from the standpoint of  already numbered 
vertices when edges between nonnumbered vertices are not considered, see fig. 2. 

A verification of  the above recurrent method as to whether it produces a 
semicanonical numbering of graphs or not can be carded out simply by tracing what 
its single steps are doing. The sets Y~, Y2 . . . . .  Yt are formed according to ( 1 3 a - b )  
in such a way that condition (9) should be fulfilled. 

For a comparison of  the above-introduced semicanonical and cooperative 
numberings of  graphs, it is very important to recognize that the sets 
Y2, Y3 . . . . .  Yt- 1 remain constant in the course of  cooperative numbering, in contrast 
to sets Y1, Y2 . . . . .  Y,-I in the semicanonical numbering that are in each step 
reconstructed with respect to the just numbered vertex. Moreover,  according to the 
reconstruction process, the whole number of  Y sets can increase more for semicanonical 
numbering. The reconstruction causes the set Y~, used as a stack of  the currently 
numbered vertices, to become progressively smaller in the forthcoming steps and 
also to more adequately reflect the bonding situation than the set Y1 in the cooperative 
numbering. It can be easily proved that each semicanonical numbering should also 
be cooperative, but a reverse statement is not necessarily true, see fig. 3. 

5 3 

2 ~ / / / / / -  -~:' 2 

3 "; 
1 1 
11 11 

110 
o oO]o  ooo 

Cooperatively numbered graph Semicanonically numbered graph 

Fig. 3. An example of the statement that not each cooperatively numbered graph 
is also a semicanonically numbered graph. On the left-hand side, it is easy to see 
that the part of the adjacency matrix placed in a rectangle is not semicanonical. 

Summarizing our considerations, the semicanonical numbering is much stronger 
than its cooperative counterpart. Its application in a process of  finding canonical 
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numbering should lead to a faster achievment of  (10) than a numbering based on 
the cooperative numbering. 

Algorithmically, the semicanonical method in pseudo-PASCAL is formulated 
as follows. 

A L G O R I T H M  2 

1. Y1 := V(G); i := 0; t : =  1; 

2. W H I L E  t > 0 DO 

4. B E G I N  i := i + 1; v := an arbitrary vertex of  Y1; 

5. r i := V; Y1 := Y1 \ {v}; 

6. F O R  k = l  TO t DO 

7. B E G I N  Y~:= F(ri) ~ Yk; Yff: = YkkYk END; 

8. t '  := 0; 

9. F O R  k : = l  TO t DO 

10. B E G I N  IF  Y ~  0 T H E N  B E G I N  t '  := t" + 1; Yt" := Yk' END; 

11. IF  Y~'~0 T H E N  BEGIN t '  : = t ' +  1; Yt,:= Y~'END; 

12. END; 

13. t := t ' ;  

14. END. 

3.3. C A N O N I C A L  N U M B E R I N G  

The method of semicanonical numbering of  graphs, as outlined above, will 
now be advantageously used as an efficient approach for the canonical numbering. 
For the purpose of our constructive enumeration of graphs, we will need to know 
only whether an adjacency matrix is canonical or not; it means that the method may 
be formulated in a simpler version. 

Let us consider an adjacency matrix A = (Aij) from the family ~q ,  and let 
us further look for a permutation R = (r 1, r 2 . . . . .  rp) which produces a maximum 
code. To do this, we have to consider only those permutations (see theorem 1) that 
give, a priori, the semicanonical adjacency matrices, all other permutations may be 
automatically rejected. This means that algorithm 2 may be simply modified in such 
a way that it produces an algorithm for checking the canonicity of  an adjacency 
matrix. 

A L G O R r l ' H M  3 

1. Yt 1~ := {1, 2 . . . . .  p}; U 1 "= {vertices of highest priority}; 
i : = 1; t x : = 1; canonicity • = true; 

2. REPEAT IF  U i ~ O T H E N  

3. B E G I N  r i := min(Ui); Ui" = Ui\{r i};  Yt i) "= y~i)\ {ri}; 
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. 

5. 

6. 

, 

8. 

9. 

10. 

13. 

14. 

15. 

16. 

17. 

18. 

19. 

20. 

21. 

FOR k : = l  TO t i D O  

BEGIN Y~:' "= F(ri) n y(i); Y~"'.= Y(ki)\Y~ END; 

y~i) := y}i) w {ri}; j ' =  O; 

FOR k := 1 TO 

BEGIN IF Y~ 

IF r i f e  

END; ti+ 1 : = j ;  

IF row i = ROW/ 

BEGIN I F i = p  

BEGIN 

t i DO 

0 THEN BEGIN j :=j+ 1; y~i+l).= y~, END; 

0 THEN B E G I N j : = j +  1; y f i + l ) : = y f f E N D  

THEN 

THEN 

i := min{k; r k ¢ k}; 

F O R j : = I  TO i - 1  DO F O R k : = I  T O p  DO 

IF rk< k THEN Uj "= Vj \ {k} ;  

END ELSE BEGIN i "= i+  1; Ui "= YI i) END 

END ELSE IF  rowi > ROWi THEN canonicity := false 

END ELSE i := i -  1; 

UNTIL (i = 0) or (not canonicity); 

The value of the Boolean variable "canonicity" is true (false) if  the adjacency 
matrix is canonical (not canonical). The set U 1 (see row 1) is composed of  indices 
that correspond to vertices of the highest priority, i.e. these vertices form a vertex 
subset which induces a maximal clique (or cliques). The symbol ROW,- denotes the 
ith row of  the lower-triangle part of  the checked adjacency matrix, whereas the 
symbol row/denotes  the same row of transformed matrix RTA R (i.e. this row is 
composed of the entries A,i ' ,1, Ari, r2 . . . . .  A~., ~i-1)" ROWS 15 to 17 contain the very 
efficient speeding method based on the existence of automorphisms in the verified 
graph. The vertices (indices) that are similar [23] to a vertex already used are 
removed from sets U i, in which the index i is bounded by i < k, and where k is the 
minimum value of an index set for which r k ~ k. Here, it is very important to note 
that this approach changes the value of  index i (determining the depth of the 
searching tree) to a lower value, that is, a huge part of  the searching tree is pruned 
by this approach: many branches which may give only results already achieved are 
skipped. In other words, the acceleration is made by pruning the searching tree, 
using created automorphisms. When some corresponding vertices are found, those 
with the lower index are removed from the set of  potential candidates in levels 
where the sequence of indices of vertices remained unchanged from the outset. 
After this, we can jump to the level where for the first time the index of  the vertex 
does not match its sequence number. By that, we have omitted the branches going 
from the lower levels. 
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4. Constructive enumeration 

Let us consider a canonically numbered graph G determined by a canonical 
adjacency matrix A ~ ~q .  A subgraph Gs c G (for s = 1, 2 . . . . .  p)  is induced [23] 
by a vertex subset  V(GD c_ V(G) composed  of  the first s natural integers, 
V(G,) = {1, 2 . . . . .  s}. 

THEOREM 3 

If the graph G is canonically numbered, then all its subgraphs Gs c G (for 
1 < s < p)  are also canonically numbered. 

This theorem (initially proved in [15]) is nothing but a rephrasing of the 
above theorem 2. It represents our basic idea of  how to construct recurrently all 
possible graphs with prescribed numbers of  vertices and edges. A dominant role 
will be played by the so-called extension process, specified as follows: Let Vext(G) 
be a vertex subset composed of  the extendable vertices (in [15], where they are also 
determined, these vertices are called unsaturated). The subset may be constructed 
by Vext(G) = {r, r + 1 . . . . .  n}, where the integer r gives the position of  the first 
nonzero entry in the nth row of the adjacency matrix of  G and n is equal to the 
number of  vertices of  the graph G, I V(G)I = n. We select a nonempty subset 
Vext(G ) c Vext(G ) composed of  some preselected extendable vertices of  G. The 
extension of G with respect to Vext(G) consists of the graph Gex t determined by 

V(Gext )  = V ( G )  u [ n + 1 }, (14a) 

E(Gext) = E(G) U ([i, n + 1]; i E Vext(G)}, (14b) 

where n + 1 is a new added vertex. We may say that the graph Gex t is constructed 
from the original canonically numbered graph G in such a way that a new vertex 
n + 1 is connected by edges with all vertices from Vext(G ). 

In general, the extended graph Gex t is not canonically numbered although its 
"parental" graph is. The concept of  semicanonical adjacency matrices now ensures 
that the resulting graph Gex t will be semicanonically numbered. According to 
definition 3, the extension process should be carried out in such a way that an 
adjacency matrix of  Gex t is semicanonical, i.e. the nth and (n + 1)st rows of  Aex t 
(assigned to Gext) must satisfy cn -> cn + 1, where cn (cn + 1) is a row vector composed 
of  the ( n -  1) first entries of  Aex t. This simple criterion automatically ensures the 
semicanonicity of  the created adjacency matrix Aex t and also gives an explanation 
why the above vertex subset Vext(G ) was constructed only from vertices numbered 
by r + 1, r + 2 . . . . .  n. If this subset contains a vertex numbered by i (where 
1 < i < r), then the adjacency matrix Aext contains entries ani = 0 and an+ 1,i = 1, that 
is, it could not be semicanonical. 
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THEOREM 4 [15] 

For a given canonically numbered graph G (composed of  n vertices), all its 
(i) (2) canonically numbered extensions G ext, G ext . . . .  represent all possible canonically 

numbered graphs (composed of n + 1 vertices) that have a subgraph induced by 
vertices { 1, 2 . . . . .  n} which is identical with the graph G. 

This theorem automatically follows from theorems 1 and 3 and from the 
process of extension. It enables us to suggest a very simple and effective method 
for constructive enumeration of  all possible graphs with the prescribed numbers of 
edges and vertices. Its effectiveness is based on the fact that only nonequivalent 
adjacency matrices are formed, i.e. there is no need to check whether the currently 
constructed matrix has already been formed or not. According to theorem 4, the 
whole construction of  canonical adjacency matrices from the family ~ q  may be 
organized in a recurrent manner. We start from the simplest graph composed of one 
vertex numbered by 1; from this graph, we construct its canonically numbered 
extension composed of two vertices and one edge, etc. An algorithmic outline of  
the proposed method in the backtrack search form has been presented in our recent 
communication [20, algorithm 2] so, therefore, we shall not repeat it here. An 
illustrative example of  our constructive enumeration is displayed in fig. 4. 

5. Conclusions 

The concept of semicanonical adjacency matrices (or semicanonically numbered 
graphs) represents a very powerful approach that allows us to considerably restrict 
the huge number of candidates whose canonicity has to be checked in the course 
of  the recurrent enumeration of graphs with the prescribed number of  vertices and 
edges. Its numerical efficiency is best documented by the fact that CPU times were 
about one or two orders smaller than those given in our earlier communication [15], 
where the cooperative numbering was used. The concept of  semicanonical numbering 
has also been used in another recent communication [20], where we presented 
constructive enumeration of  graphs based on the maximum codes produced by the 
upper-triangle part of  adjacency matrices. It offers a constructive enumeration very 
similar to the approach initially suggested by Faradzhev [17, 18] fifteen years ago. 
In our forthcoming communication [26], we would like to apply the present formalism 
for constructive enumeration of multigraphs with the prescribed distribution of 
valence states and empirical formulae (cf. ref. [16]). 
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